Face Recognition from One Sample per Person

نویسندگان

  • Swathi Chandra
  • Priya Thomas
چکیده

As one of the most visible applications in computer vision communication, face recognition (FR) has become significant role in the community. In the past decade, researchers have been devoting themselves to addressing the various problems emerging in practical FR applications in uncontrolled or less controlled environment. In many practical applications of FR (e.g., law enforcement, e-passport, ID card verification, etc.), there is only one sample per person. Face recognition (FR) with a One Sample per Person is a very challenging problem due to the lack of information to predict the variations in the query image. The number of training samples per person will greatly affect the performance of face recognition. In the case of One Sample per Person, existing manifold learning algorithms cannot be directly applied, since those algorithms need multiple training samples per person to represent the query face. To address the problem of One Sample per Person, we propose in this paper a novel multi manifold analysis method by learning discriminative features from each manifold. In this technique, each recorded face image is first detected. Detected face image is then partitioned into several non overlapping patches to form an image set where each set contains images belonging to the same subject. By modelling each image set as a manifold, we formulate the One Sample per Person face recognition problem as the computation of the distance between two manifolds and learn multiple feature spaces to maximize the manifold margins of different persons. Finally, we present a reconstruction-based manifold-manifold distance where identification is achieved by seeking the minimum manifold-manifold distance (MMD) from the probe to the gallery of image sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face recognition from a single image per person: A survey

One of the main challenges faced by the current face recognition techniques lies in the difficulties of collecting samples. Fewer samples per person mean less laborious effort for collecting them, lower costs for storing and processing them. Unfortunately, many reported face recognition techniques rely heavily on the size and representative of training set, and most of them will suffer serious ...

متن کامل

Local Gabor Binary Pattern Whitened PCA: A Novel Approach for Face Recognition from Single Image Per Person

One major challenge for face recognition techniques is the difficulty of collecting image samples. More samples usually mean better results but also more effort, time, and thus money. Unfortunately, many current face recognition techniques rely heavily on the large size and representativeness of the training sets, and most methods suffer degraded performance or fail to work if there is only one...

متن کامل

Image Generation Using Bidirectional Integral Features for Face Recognition with a Single Sample per Person

In face recognition, most appearance-based methods require several images of each person to construct the feature space for recognition. However, in the real world it is difficult to collect multiple images per person, and in many cases there is only a single sample per person (SSPP). In this paper, we propose a method to generate new images with various illuminations from a single image taken ...

متن کامل

Expression Subspace Projection for Face Recognition from Single Sample per Person

Discriminant analysis methods are powerful tools in face recognition. However, these methods are not applicable under the single sample per person scenario because the within-subject variability cannot be estimated in this case. In the generic learning solution, this variability is estimated using images of a generic training set, for which more than one sample per person is available. However,...

متن کامل

Efficiency of Recognition Methods for Single Sample per Person Based Face Recognition

Even for the present-day computer technology, the biometric recognition of human face is a difficult task and continually evolving concept in the area of biometric recognition. The area of face recognition is well-described today in many papers and books, e.g. (Delac et al., 2008), (Li & Jain, 2005), (Oravec et al., 2010). The idea that two-dimensional still-image face recognition in controlled...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014